NVIDIA PhysX 2.x Engine

X SR fpe Vaync off IHELAIDD), KESNGINE (D340E) [RLE 31577 fon Veync off (IIDSIG, SRURGREH! 15450
WU, o s MVTTIOA GFtieco 7 560 T) FRAL (hves wpr): WA Gnded e OTX 56011

0% 24T fve Vayne ol [DO0AUDD). XHEREBIEE (D3N] - B30D FLET fow Vg oll [DOUXUDDL, XHFEREIRHE [DI400)
n

WAL Phams wpid: WWILHA GeFince GTH S5O FRRL 4y e RAATNA Gied ot e 10 550011

Description: game like physics sandbox application, with data driven "levels" featuring the core
components of the PhysX 2.X SDK

Features:
1) simple OO entity hierarchy
2) xml based scene description (TinyXML loader) — meshes, textures, materials, actors, PhysX
descriptors, scenes
3) PhysX features — rigidbody, cloth + tearing, pressure cloth, softbody, joints, terrain, forcefields



2D Fluid Simulation

Description: 2D “stable fluid” simulation

Features:
1) implementation of the renowned algorithm of Jos Stam
2) obstacles
3) vorticity confinement
4) monotonic cubic interpolation, MacCormack advection

Reference:

Jos Stam — Stable Fluids

GPU Gems — Fast Fluid Dynamics Simulation on the GPU

GPU Gems 3 — Real-Time Simulation and Rendering of 3D Fluids



Radiosity

Sim)
=—-=
NN

Description: image synthesis based on light reflections off diffuse surfaces

Steps:
1) divide surfaces into patches
2) calculate form factors between patches
* tested multiple sample generation algorithms (jitter, multi-jitter, Poisson) for visibility
calculations
¢ compared multiple form factor calculations (closed form, differential area to differential
area, diLaura, hemicube, MonteCarlo)
* accelerated patch visibility calculation with OBB—OBB intersection test (OBB occluder
versus OBB formed by two facing patches)

3) solve linear system arising from the radiosity equation

Reference:

Peter Schroder, Pat Hanrahan — On the Form Factor between Two Polygons

D.L. DiLaura — Nondiffuse Radiative Tranfer 2 — Planar Area Sources and Receivers
An-SeopChoi — Practical applications of form factor computation in lighting calculations



Buoyancy Force Calculation

Description: simple boat simulation

Algorithm Overview: calculating hydrostatic forces on immersed bodies represented by a triangular
mesh

Steps:
1) moment of inertia (rotational inertia) calculation for triangle mesh (hull) — triangles are
approximated as plates with infinitely small thickness
only calculated once, can be calculated before the whole simulation
* divide every triangle into 2 right-angled triangle

¢ with the help of parallel axis theorem (inertia tensor) sum the contribution of the right-
angled triangles to the moment of inertia at the center of mass

T

moment of inertia validation — rectangle assembled from 4 right-angled triangles



2) separate and tessellate boat hull according to water height for buoyancy force calculation —
divide triangles that are only partially submerged into fully submerged and non-submerged
triangles

3) calculate the point of application and magnitude of the hydrostatic force for every triangle
resulted in step 2 and accumulate it at the center of mass of the boat

pressure distribution on a partially submerged sphere
4) use the calculated force to update the position of the boat — render image

5) update water height, go back to step 2

References:
Water interaction model for boats in video games by Jacques Kerner


http://www.gamasutra.com/view/news/237528/Water_interaction_model_for_boats_in_video_games.php

Periodic Caustic Texture

Description: generating periodic caustics pattern in space and time

Algorithm Overview: random (fractal) surface profile by filtering a three-dimensional white noise by a
power law-like filter in space and a Gaussian-like filter in time

Steps:

1) random height field generation based on frequency synthesis
* create a random white noise signal

* apply the fast Fourier transform to transfer the data into the frequency domain and apply the
1/f filter

transform it back to the spatial domain with an inverse fast Fourier transform

R
S

S
S Rty




2) smoothing in time with Gaussian filter

3) projection of the resulting surface (triangles) to the ground plane — assuming directional light
source pointing at this surface, computation of the intersection of the refracted rays with a plane
at some depth — visualization with fixed-function OpenGL additive blending, triangle intensity
is proportional to the area of the triangle

References:
Periodic Caustic Textures by Jos Stam
Frequency Synthesis of Landscapes (and clouds)



http://www.dgp.toronto.edu/~stam/reality/Research/PeriodicCaustics/index.html
http://paulbourke.net/fractals/noise/

Autodesk Maya — C++ API

Description: Bezier patch visualization with teapot primitive

Features:
1) raw Bezier data to nurbs surface
2) raw Bezier data to polygon mesh

Description: torus knot (TK) curve node

Features:
1) node input params — p, q, segments




2) the algorithm samples the parametric TK equation to construct the Bezier curve control points
3) least-squares algorithm sets the tangents to minimize the distance between the ground truth TK
curve and the Bezier curve

Description: Gerstner wave

Features:
1) the node deforms an input poly plane to Gerstner waves

References:
GPU Gems - Effective Water Simulation from Physical Models



http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html

Autodesk Maya — Python + PyQt

O\ _Dllll
VLIS YILIS

IR IAIAYASAY

al IS IOE&
QIO N O/O)S
TR IKIAYATAY

Al ILISAIAYLY

VLIS ILI S
TIRY INAYASAY

TN IOS

S1012 (N O/O)S)
TN INAYASTAY

Wl _Dluu J
LIS Y.ILILS
TR IKIAYATAY

\ VU.D_ | OJS;

WNLISLAY.ILILS
ORI IMAYASAY

Description: Candy Crush Saga style game with Maya primitives

2) mesh creation, key frames, shader setup in python

1) game logic scripted in python
3) basic PyQt GUI

Features:



NextLimit RealFlow

Description: Dyverso SPH liquid simulation

Features:
1) liquid pouring into a glass with solid object inside interacting with the flow



Description: SPH melt simulation

Features:
1) base mesh filled with frozen particles
2) particles are set free based on particle neighbor count
3) the object melts from its surface first



Simulating Ocean Water

Description: height field for ocean waves based on a statistical oceanographic model

Algorithm Overview:
1) Fast Fourier Transform (FFT) on the amplitudes defined by the Phillips-spectrum to obtain the
wave height realization — OpenCL
2) 3 distinct FFT stages calculate the displacement field — height field + choppy effect
3) 2D FFT — local memory radix with traspose, cl-gl interop for height/normal map
4) Preetham Sky Model for background full screen quad — GLSL
5) screen space projected grid mesh visualization — GLSL

References:
Simulating Ocean Waves by Jerry Tessendorf



